论文标题

(2,3)亲切的树木和路径

(2,3) Cordial Trees and Paths

论文作者

Santana, Manuel, Mousley, Jonathan, Brown, David, Beasley, Leroy

论文摘要

最近,L。B。Beasley在[1]中引入了$(2,3)$ - 定向图的亲切标签。他做出了两种猜想,我们在本文中解决了这一点。他猜想,长度至少五个路径的每一个方向都是$(2,3)$ corceial,并且每棵最大学位的树$ n = 3 $都有亲切的方向。我们表明这两个猜想是错误的。我们还讨论了Petersen图的方向的$(2,3)$ coctiality,并为图形可以并且仍然是$(2,3)$ corceial建立上限。还提出了$(2,3)$ CORDIAL标签的应用。

Recently L. B. Beasley introduced $(2,3)$-cordial labelings of directed graphs in [1]. He made two conjectures which we resolve in this article. He conjectured that every orientation of a path of length at least five is $(2,3)$ cordial, and that every tree of max degree $n =3$ has a cordial orientation. We show these two conjectures to be false. We also discuss the $(2,3)$ cordiality of orientations of the Petersen graph, and establish an upper bound for the number of edges a graph can have and still be $(2,3)$ cordial. An application of $(2,3)$ cordial labelings is also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源