论文标题
优化横向量子点几何形状以减少交换噪声
Optimizing lateral quantum dot geometries for reduced exchange noise
论文作者
论文摘要
对于量子点中的电子旋转Qub,降低电荷噪声灵敏度是实现由交换相互作用介导的耐受耐受性的两倍闸门的关键步骤。这项工作探讨了物理设备的几何形状如何影响由于电荷噪声而导致的栅极电压和互导偏置的交换的敏感性。我们提出了谐波轨道构型相互作用(LCHO-CI)方法的修改线性组合,用于计算适用于通用量子点网络的交换能。在修改的LCHO-CI方法中,在DOT网络中心形成的一组谐波轨道集用于近似多电子状态。这种基础选择可显着减少完整CI计算的计算时间,这是通过启用用于评估库仑积分的矩阵元素的预先计算的库库。最终的多电子光谱被映射到Heisenberg Hamiltonian上,以确定单个成对电子交换强度,即$ J_ {IJ} $。通过优化谐波轨道的选择而不显着延长计算时间,可以进一步提高修饰的LCHO-CI方法的准确性。修改后的LCHO-CI方法用于计算两个电子占用的硅MOSFET双量子点的$ J $。二维电位景观是根据3D设备结构计算得出的,包括Si/Sio $ _2 $异质结构和金属栅极电极。修改后的LCHO-CI方法的计算效率使设备参数的系统调整能够确定其对$ j $对噪声的敏感性的影响,包括柱塞闸门尺寸,隧道门宽度,SIO $ _2 $ _2 $厚度和点偏心。通常,我们发现具有较大的点充电能,较小的柱塞门杆臂和对称点的几何形状对噪声敏感。
For electron spin qubits in quantum dots, reducing charge noise sensitivity is a critical step in achieving fault tolerant two-qubit gates mediated by the exchange interaction. This work explores how the physical device geometry affects the sensitivity of exchange to fluctuations in applied gate voltage and interdot bias due to charge noise. We present a modified linear combination of harmonic orbitals configuration interaction (LCHO-CI) method for calculating exchange energies that is applicable to general quantum dot networks. In the modified LCHO-CI approach, an orthogonal set of harmonic orbitals formed at the center of the dot network is used to approximate the many-electron states. This choice of basis significantly reduces the computation time of the full CI calculation by enabling a pre-calculated library of matrix elements to be used in evaluating the Coulomb integrals. The resultant many-electron spectra are mapped onto a Heisenberg Hamiltonian to determine the individual pairwise electronic exchange interaction strengths, $J_{ij}$. The accuracy of the modified LCHO-CI method is further improved by optimizing the choice of harmonic orbitals without significantly lengthening the calculation time. The modified LCHO-CI method is used to calculate $J$ for a silicon MOSFET double quantum dot occupied by two electrons. Two-dimensional potential landscapes are calculated from a 3D device structure, including both the Si/SiO$_2$ heterostructure and metal gate electrodes. The computational efficiency of the modified LCHO-CI method enables systematic tuning of the device parameters to determine their impact on the sensitivity of $J$ to charge noise, including plunger gate size, tunnel gate width, SiO$_2$ thickness and dot eccentricity. Generally, we find that geometries with larger dot charging energies, smaller plunger gate lever arms, and symmetric dots are less sensitive to noise.