论文标题

XAI4WIND:一个多模式知识图数据库,用于在风力涡轮机的操作和维护中提供可解释的决策支持

XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines

论文作者

Chatterjee, Joyjit, Dethlefs, Nina

论文摘要

基于条件的监测(CBM)已在风能行业广泛使用,用于监测涡轮机的操作不一致和故障,其技术从信号处理和振动分析到人工智能(AI)模型,使用监督控制和获取(SCADA)数据。但是,现有研究并未提出具体的基础,无法促进操作和维护(O&M)中可解释的决策支持,尤其是通过建议与CBM技术预测的失败相对应的适当维护行动报告来自动决策支持。知识图数据库(KGS)模拟了特定领域信息的集合,并在医疗保健和金融等领域的现实世界决策支持中发挥了内在作用,但在风能行业的关注非常有限。我们提出了XAI4Wind,这是一个多式模式知识图,用于现实世界中可解释的决策支持,并通过实验通过交互式查询和推理和推理并使用图形数据科学算法提供新颖的见解,并通过互动查询和推理来证明O&M计划的几个用例。提出的KG通过将我们的KG与可解释的AI模型集成了用于异常预测的AI模型,将诸如SCADA参数和警报等多模式知识与自然语言维护动作,图像等结合在一起,我们表明它可以提供有效的人类无能为力的O&M策略,以预测各种涡轮型子组件中的预测操作。这可以帮助灌输对传统黑盒AI模型的信任和信心。我们将KG公开提供,并设想它可以作为在风能行业提供自动决策支持的建筑基地。

Condition-based monitoring (CBM) has been widely utilised in the wind industry for monitoring operational inconsistencies and failures in turbines, with techniques ranging from signal processing and vibration analysis to artificial intelligence (AI) models using Supervisory Control & Acquisition (SCADA) data. However, existing studies do not present a concrete basis to facilitate explainable decision support in operations and maintenance (O&M), particularly for automated decision support through recommendation of appropriate maintenance action reports corresponding to failures predicted by CBM techniques. Knowledge graph databases (KGs) model a collection of domain-specific information and have played an intrinsic role for real-world decision support in domains such as healthcare and finance, but have seen very limited attention in the wind industry. We propose XAI4Wind, a multimodal knowledge graph for explainable decision support in real-world operational turbines and demonstrate through experiments several use-cases of the proposed KG towards O&M planning through interactive query and reasoning and providing novel insights using graph data science algorithms. The proposed KG combines multimodal knowledge like SCADA parameters and alarms with natural language maintenance actions, images etc. By integrating our KG with an Explainable AI model for anomaly prediction, we show that it can provide effective human-intelligible O&M strategies for predicted operational inconsistencies in various turbine sub-components. This can help instil better trust and confidence in conventionally black-box AI models. We make our KG publicly available and envisage that it can serve as the building ground for providing autonomous decision support in the wind industry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源