论文标题
分散关系和CFT相关器的精确界限
Dispersion relations and exact bounds on CFT correlators
论文作者
论文摘要
我们为CFT相关器提供了新的交叉对称色散公式,仅限于该线。公式等同于我们所谓的主函数所隐含的总和规则,这些功能是对交叉方程的分析极端函数。分散关系提供了Polyakov Bootstrap的约束以及线上交叉对称性的约束的等效表述。内置的阳性属性意味着欧几里得部分上一般CFT相关器的值的简单且精确的下限和上限,该值被广义自由场饱和。除了在相关器上的界限外,我们还应用这项技术来确定在任意CFTS的Regge极限上的新通用约束,并获得3D ISING自旋相关器的非常简单和准确的表示。
We derive new crossing-symmetric dispersion formulae for CFT correlators restricted to the line. The formulae are equivalent to the sum rules implied by what we call master functionals, which are analytic extremal functionals which act on the crossing equation. The dispersion relations provide an equivalent formulation of the constraints of the Polyakov bootstrap and hence of crossing symmetry on the line. The built in positivity properties imply simple and exact lower and upper bounds on the values of general CFT correlators on the Euclidean section, which are saturated by generalized free fields. Besides bounds on correlators, we apply this technology to determine new universal constraints on the Regge limit of arbitrary CFTs and obtain very simple and accurate representations of the 3d Ising spin correlator.