论文标题
从预测到从活性液体的一对相关性学习耗散
From predicting to learning dissipation from pair correlations of active liquids
论文作者
论文摘要
由局部非保守力量驱动的活动系统可以采用独特的行为和配置。利用这种特性的新型材料设计的一个重要挑战是将活动系统的静态结构与当地驾驶引起的能量耗散。在这里,我们使用液态理论和机器学习的工具来应对这一挑战。我们首先在分析上证明各向同性活性物质系统,当驱动力像活跃温度一样,耗散和对相关性密切相关。然后,我们扩展了一个非平衡均值场框架来预测这些对相关性,与大多数现有方法不同,即使大多数现有方法也适用于强烈相互作用的粒子,并且远离平衡,用于预测这些系统中的耗散。基于这一理论,我们揭示了耗散与结构之间的牢固分析关系,即使系统接近非平衡相变。最后,我们构建了一个神经网络,该神经网络将粒子的静态配置映射到其耗散率,而无需任何基本动力学的知识。我们的结果开放了关于耗散与组织外部之间相互作用的新观点。
Active systems, which are driven out of equilibrium by local non-conservative forces, can adopt unique behaviors and configurations. An important challenge in the design of novel materials which utilize such properties is to precisely connect the static structure of active systems to the dissipation of energy induced by the local driving. Here, we use tools from liquid-state theories and machine learning to take on this challenge. We first demonstrate analytically for an isotropic active matter system that dissipation and pair correlations are closely related when driving forces behave like an active temperature. We then extend a nonequilibrium mean-field framework for predicting these pair correlations, which unlike most existing approaches is applicable even for strongly interacting particles and far from equilibrium, to predicting dissipation in these systems. Based on this theory, we reveal a robust analytic relation between dissipation and structure which holds even as the system approaches a nonequilibrium phase transition. Finally, we construct a neural network which maps static configurations of particles to their dissipation rate without any prior knowledge of the underlying dynamics. Our results open novel perspectives on the interplay between dissipation and organization out-of-equilibrium.