论文标题

通过准确的模拟评估神经元文化的模式识别性能

Assessing Pattern Recognition Performance of Neuronal Cultures through Accurate Simulation

论文作者

Lagani, Gabriele, Mazziotti, Raffaele, Falchi, Fabrizio, Gennaro, Claudio, Cicchini, Guido Marco, Pizzorusso, Tommaso, Cremisi, Federico, Amato, Giuseppe

论文摘要

先前的工作表明,可以在多电极阵列(MEA)上训练神经元文化以识别非常简单的模式。但是,这项工作主要集中于证明可以在文化中诱导可塑性,而不是对其模式识别性能进行严格的评估。在本文中,我们通过开发一种方法来解决这一差距,该方法使我们能够评估神经元文化在学习任务上的表现。具体而言,我们提出了真实培养的神经元网络的数字模型。我们确定具有生物学上合理的模拟参数,使我们能够可靠地重现真实培养的行为。我们使用模拟文化来执行手写数字识别并严格评估其性能;我们还表明,有可能为特定任务找到改进的仿真参数,这可以指导创建真实的文化。

Previous work has shown that it is possible to train neuronal cultures on Multi-Electrode Arrays (MEAs), to recognize very simple patterns. However, this work was mainly focused to demonstrate that it is possible to induce plasticity in cultures, rather than performing a rigorous assessment of their pattern recognition performance. In this paper, we address this gap by developing a methodology that allows us to assess the performance of neuronal cultures on a learning task. Specifically, we propose a digital model of the real cultured neuronal networks; we identify biologically plausible simulation parameters that allow us to reliably reproduce the behavior of real cultures; we use the simulated culture to perform handwritten digit recognition and rigorously evaluate its performance; we also show that it is possible to find improved simulation parameters for the specific task, which can guide the creation of real cultures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源