论文标题

高斯拉普拉斯本征functions的淋巴结成分计数的浓度

Concentration for nodal component count of Gaussian Laplace eigenfunctions

论文作者

Priya, Lakshmi

论文摘要

我们研究了以下高斯拉普拉斯特征功能的结节组件计数:单色随机波(MRW)上的$ \ mathbb {r}^2 $,在$ \ mathbb {t}^2 $上,在$ \ mathbb {rsh)上对$ \ mathbb {t}^2 $上的算术随机波(arw)上$ \ mathbb {s}^2 $和$ \ mathbb {t}^2 $在$ \ mathbb {s}^2 $上的NODAL组件计数的指数浓度分别由Nazarov-Sodin和Rozenshein建立。在以下三种情况下,我们证明了节点组件计数的指数浓度:MRW在$ \ mathbb {r}^2 $中种植欧几里得球; RSH和ARW在$ \ Mathbb {s}^2 $和$ \ Mathbb {t}^2 $中,其半径略大于波长刻度。

We study nodal component count of the following Gaussian Laplace eigenfunctions: monochromatic random waves (MRW) on $\mathbb{R}^2$, arithmetic random waves (ARW) on $\mathbb{T}^2$ and random spherical harmonics (RSH) on $\mathbb{S}^2$. Exponential concentration for nodal component count of RSH on $\mathbb{S}^2$ and ARW on $\mathbb{T}^2$ were established by Nazarov-Sodin and Rozenshein respectively. We prove exponential concentration for nodal component count in the following three cases: MRW on growing Euclidean balls in $\mathbb{R}^2$; RSH and ARW on geodesic balls, in $\mathbb{S}^2$ and $\mathbb{T}^2$ respectively, whose radius is slightly larger than the wavelength scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源