论文标题
中尺度涡流动量通量的预后,单方面模型
A Prognostic, One-Equation Model of Meso-Scale Eddy Momentum Fluxes
论文作者
论文摘要
我们提出了一种用于涡流流相互作用的预后,一个方程模型,以参数化Eliassen-Palm通量张量(EPFT)的差异,该模型来自厚度加权平均(TWA)液压boussinesq方程。 TWA方程系统并未调用近似近似值超出静液压boussinesq方程有效的近似值,这构成了具有清晰物理解释的数学上一致的框架。该模型旨在在没有地形特征的情况下,用于划定对称流的绝热内部,其中术语对应于EPFT占主导地位的涡流形式阻力。我们使用梯度假设将涡流形式拖动术语对水平动量的垂直通量进行建模,作为涡流粘度和水平动量的垂直梯度的乘积。我们使用混合长度理论将粘度与涡流长度和涡流速度相关联,涡流速度与TWA系统中的涡流成正比。涡流长度刻度被建模为第一个Rossby变形半径,我们根据平均流量的函数计算出来。我们在每个水平位置使用预后方程来垂直整合的涡流能量,我们从TWA框架中得出,然后通过忽略传输,重新分布和生物术语来简化感兴趣的流。使用第一个斜压模式的特征值将预后的垂直整合涡流投射到水柱上,以在每个垂直位置获得涡流能量。涡流具有水平和垂直结构。我们诊断出模型方程在涡流的数值模拟中,代表了南大洋的区域重点通道。我们已经在海洋模型中实现了模型参数化,并对其进行了测试以模拟该流程的参数化模拟。
We present a prognostic, one-equation model for eddy-mean flow interactions to parameterize the divergence of the Eliassen-Palm flux tensor (EPFT) that arises from thickness-weighted averaging (TWA) the hydrostatic Boussinesq equations. The TWA system of equations does not invoke approximations beyond those for which the hydrostatic Boussinesq equations are valid, constituting a mathematically consistent framework with clear physical interpretations. This model is intended for the adiabatic interior of zonally symmetric flows, in the absence of topographic features, where terms corresponding to eddy interfacial form drag in the EPFT dominate forces. We model eddy interfacial form drag terms for vertical flux of horizontal momentum using the gradient hypothesis, as the product of an eddy viscosity and the vertical gradient of horizontal momentum. We use mixing length theory to relate viscosity to an eddy length scale and an eddy velocity, which is proportional to the eddy energy in the TWA system. The eddy length scale is modeled as the first Rossby radius of deformation, which we calculate as a function of the mean flow. We use a prognostic equation for vertically integrated eddy energy at each horizontal location, which we derive from the TWA framework, and then simplify to the flows of interest by ignoring transport, redistribution and diabatic terms. The prognostic vertically integrated eddy energy is projected onto the water column using the eigenvalue of the first baroclinic mode to obtain the eddy energy at each vertical position. The eddy viscosity has horizontal as well as vertical structure. We diagnosed the model equations in an eddy resolving numerical simulation of a zonally re-entrant channel representative of the Southern Ocean. We have implemented the model parameterization in an ocean model and tested it to simulate a parameterized simulation of this flow.