论文标题

和弦图在球形曲线上的空间

Space of chord diagrams on spherical curves

论文作者

Ito, Noboru

论文摘要

在本文中,我们给出了$ \ mathbb {z} $的定义 - 从$ \sum_iα_ix_i $表示的conterical/plane曲线的环境同位素类别中的有价值函数。然后,我们介绍由和弦图生成的免费$ \ mathbb {z} $ - 最多使用$ l $和弦生成的模块,称为(i)类型((sii),(wii),(wii),(siii),(siii),或(wiii)或(wiii),或(wiii),或(wiii),spess。 $ \sum_iα_ix_i $。 The main result (Theorem~1) shows that if $\sum_i α_i \tilde{x}_i$ vanishes for the relators of Type (I) ((SII), (WII), (SIII), or (WIII), resp.), then $\sum_i α_i x_i$ is invariant under the Reidemeister move of type RI (strong RII, weak RII,强RIII或弱RIII,分别是[Ito-Takimura(2013),J。Knot Theory Ramifations]中定义的。

In this paper, we give a definition of $\mathbb{Z}$-valued functions from the ambient isotopy classes of spherical/plane curves derived from chord diagrams, denoted by $\sum_i α_i x_i$. Then, we introduce certain elements of the free $\mathbb{Z}$-module generated by the chord diagrams with at most $l$ chords, called relators of Type (I) ((SII), (WII), (SIII), or (WIII), resp.), and introduce another function $\sum_i α_i \tilde{x}_i$ derived from $\sum_i α_i x_i$. The main result (Theorem~1) shows that if $\sum_i α_i \tilde{x}_i$ vanishes for the relators of Type (I) ((SII), (WII), (SIII), or (WIII), resp.), then $\sum_i α_i x_i$ is invariant under the Reidemeister move of type RI (strong RII, weak RII, strong RIII, or weak RIII, resp.) that is defined in [Ito-Takimura (2013), J. Knot Theory Ramifications].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源