论文标题

LGENET:机载激光扫描点云的语义分割的本地和全球编码器网络

LGENet: Local and Global Encoder Network for Semantic Segmentation of Airborne Laser Scanning Point Clouds

论文作者

Lin, Yaping, Vosselman, George, Cao, Yanpeng, Yang, Michael Ying

论文摘要

对机载激光扫描(ALS)点云的解释是生产各种地理信息产品(例如3D城市模型,数字地形模型和土地使用地图)的关键程序。在本文中,我们提出了一个本地和全局编码器网络(LGENET),用于ALS点云的语义分割。为了调整KPCONV网络,我们首先通过2D和3D点汇集提取功能,以允许网络学习更多代表性的本地几何形状。然后,在网络中使用全局编码器来利用对象和点级别的上下文信息。我们设计了一个基于细分的边缘条件卷积,以编码段之间的全局上下文。我们在网络末尾应用空间通道注意模块,该模块不仅捕获了点之间的全局相互依赖性,而且还模拟了通道之间的相互作用。我们在两个ALS数据集上评估了我们的方法,即ISPRS基准数据集和DCF2019数据集。对于ISPRS基准数据集,我们的模型以0.845的总体准确性和平均F1分数为0.737。关于DFC2019数据集,我们提出的网络的总体准确度为0.984,平均F1得分为0.834。

Interpretation of Airborne Laser Scanning (ALS) point clouds is a critical procedure for producing various geo-information products like 3D city models, digital terrain models and land use maps. In this paper, we present a local and global encoder network (LGENet) for semantic segmentation of ALS point clouds. Adapting the KPConv network, we first extract features by both 2D and 3D point convolutions to allow the network to learn more representative local geometry. Then global encoders are used in the network to exploit contextual information at the object and point level. We design a segment-based Edge Conditioned Convolution to encode the global context between segments. We apply a spatial-channel attention module at the end of the network, which not only captures the global interdependencies between points but also models interactions between channels. We evaluate our method on two ALS datasets namely, the ISPRS benchmark dataset and DCF2019 dataset. For the ISPRS benchmark dataset, our model achieves state-of-the-art results with an overall accuracy of 0.845 and an average F1 score of 0.737. With regards to the DFC2019 dataset, our proposed network achieves an overall accuracy of 0.984 and an average F1 score of 0.834.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源