论文标题

眼镜中的声音吸收

Sound absorption in glasses

论文作者

Buchenau, U., D'Angelo, G., Carini, G., Liu, X., Ramos, M. A.

论文摘要

本文用三种兼容的现象学模型来描述玻璃中的声波吸收,从最低的温度到玻璃过渡。谐振隧道,松弛隧穿到隧道高原的崛起以及经典放松的跨界是玻璃的通用特征,隧道模型及其扩展很好地描述了软振动和低障碍弛豫,柔软的潜在模型。它在较高温度下的进一步扩展到非宇宙特征的是非常灵活的吉尔罗伊 - 菲利普斯模型,它允许从经典宽松域中声波吸收的频率和温度依赖性确定特定玻璃的能量景观的屏障密度。要在升高的温度下正确应用它,就需要根据剪切合规制定其配方。当人们接近玻璃过渡时,通用性再次开始,屏障密度的指数升高反映了玻璃温度下粘性的粘性快速kohlrausch t^beta-t^beta-Tail(随时间t,接近1/2)。检查了该方案的有效性,以获取具有和没有次级松弛峰的几个眼镜和聚合物的文献数据。机械弛豫的冷冻kohlrausch尾巴没有表明在具有氢键的分子玻璃的介电数据中观察到的强度依赖性屏障密度。取而代之的是,机械放松数据表明,任何玻璃的温度独立屏障密度可描述的能量景观。

The paper presents a description of the sound wave absorption in glasses, from the lowest temperatures up to the glass transition, in terms of three compatible phenomenological models. Resonant tunneling, the rise of the relaxational tunneling to the tunneling plateau and the crossover to classical relaxation are universal features of glasses and are well described by the tunneling model and its extension to include soft vibrations and low barrier relaxations, the soft potential model. Its further extension to non-universal features at higher temperatures is the very flexible Gilroy-Phillips model, which allows to determine the barrier density of the energy landscape of the specific glass from the frequency and temperature dependence of the sound wave absorption in the classical relaxation domain. To apply it properly at elevated temperatures, one needs its formulation in terms of the shear compliance. As one approaches the glass transition, universality sets in again with an exponential rise of the barrier density reflecting the frozen fast Kohlrausch t^beta-tail (in time t, with beta close to 1/2) of the viscous flow at the glass temperature. The validity of the scheme is checked for literature data of several glasses and polymers with and without secondary relaxation peaks. The frozen Kohlrausch tail of the mechanical relaxation shows no indication of the strongly temperature-dependent barrier density observed in dielectric data of molecular glasses with hydrogen bonds. Instead, the mechanical relaxation data indicate an energy landscape describable with a frozen temperature-independent barrier density for any glass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源