论文标题

通过高光谱图像,城市景观中弱监督的语义细分

Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image

论文作者

Huang, Yuxing, You, Shaodi, Fu, Ying, Shen, Qiu

论文摘要

高分辨率高光谱图像(HSIS)包含不同光谱带中每个像素的响应,可用于在复杂场景中有效区分各种对象。尽管HSI摄像机已成为低成本,但基于它的算法并未得到很好的利用。在本文中,我们专注于一个新颖的话题,通过HSIS中的城市景观中弱监督的语义细分。这是基于这样的想法:在城市场景中,高分辨率HSI包含丰富的光谱信息,这些信息很容易与语义相关联,而无需手动标记。因此,它可以在复杂的场景中实现低成本,高度可靠的语义细分。具体而言,在本文中,我们理论上分析了HSIS,并引入了一个弱监督的HSI语义分割框架,该框架利用光谱信息将粗标签改进到更细长的程度上。实验结果表明,我们的方法可以获得高度竞争性的标签,甚至比人造精细标签具有更高的边缘细度。同时,结果还表明,精制标签可以有效地改善语义分割的效果。 HSIS和语义分割的组合证明了HSI在高级视觉任务中具有巨大的潜力。

High-resolution hyperspectral images (HSIs) contain the response of each pixel in different spectral bands, which can be used to effectively distinguish various objects in complex scenes. While HSI cameras have become low cost, algorithms based on it have not been well exploited. In this paper, we focus on a novel topic, weakly-supervised semantic segmentation in cityscape via HSIs. It is based on the idea that high-resolution HSIs in city scenes contain rich spectral information, which can be easily associated to semantics without manual labeling. Therefore, it enables low cost, highly reliable semantic segmentation in complex scenes. Specifically, in this paper, we theoretically analyze the HSIs and introduce a weakly-supervised HSI semantic segmentation framework, which utilizes spectral information to improve the coarse labels to a finer degree. The experimental results show that our method can obtain highly competitive labels and even have higher edge fineness than artificial fine labels in some classes. At the same time, the results also show that the refined labels can effectively improve the effect of semantic segmentation. The combination of HSIs and semantic segmentation proves that HSIs have great potential in high-level visual tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源