论文标题
(Aggine)SL(2,Q) - 单位的自动形态
Automorphisms of (Affine) SL(2,q)-Unitals
论文作者
论文摘要
$ \ operatotorName {sl}(2,q)$ - 单位是订单$ q $的单位,在某个块的补充中,定期操作$ \ permatatorname {sl}(2,q)$的定期操作。它们可以从Aggine $ \ operatorname {sl}(2,q)$ - 单元通过并行性获得。我们计算了一个敏锐的上限,用于仿射$ \ operatorname {sl}(2,q)$ - 单元的自动形态学组,并证明所有自动形态恰好固定了两个并行性。在$ \ operatorname {sl}(2,q)$ - 单元作为封闭$ \ operatatorName {sl}(2,q)$ - 通过这两个并行性的单位物获得的单位,我们表明在完整的自动术组下固定了一个块。
$\operatorname{SL}(2,q)$-unitals are unitals of order $q$ admitting a regular action of $\operatorname{SL}(2,q)$ on the complement of some block. They can be obtained from affine $\operatorname{SL}(2,q)$-unitals via parallelisms. We compute a sharp upper bound for automorphism groups of affine $\operatorname{SL}(2,q)$-unitals and show that exactly two parallelisms are fixed by all automorphisms. In $\operatorname{SL}(2,q)$-unitals obtained as closures of affine $\operatorname{SL}(2,q)$-unitals via those two parallelisms, we show that there is one block fixed under the full automorphism group.