论文标题
比较准代码的距离边界
A Comparison of Distance Bounds for Quasi-Twisted Codes
论文作者
论文摘要
根据多项式矩阵和相应的特征区的特征值,提出了在有限场上的最小距离代码上最小距离上的光谱边界。他们以类似于Roos和Shift Bends扩展循环代码的BCH和HT边界的方式来概括Semenov-Trifonov和Zeh-Ling边界。光谱理论中准代码的特征编码以及其串联结构中的外部代码是相关的。基于此关系的比较验证了詹森结合在特殊条件下始终优于频谱的表现,从而产生了拉利和光谱边界之间的相似关系。与彼此相比,表现出Lally,Jensen和光谱界的性能。
Spectral bounds on the minimum distance of quasi-twisted codes over finite fields are proposed, based on eigenvalues of polynomial matrices and the corresponding eigenspaces. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a way similar to how the Roos and shift bounds extend the BCH and HT bounds for cyclic codes. The eigencodes of a quasi-twisted code in the spectral theory and the outer codes in its concatenated structure are related. A comparison based on this relation verifies that the Jensen bound always outperforms the spectral bound under special conditions, which yields a similar relation between the Lally and the spectral bounds. The performances of the Lally, Jensen and spectral bounds are presented in comparison with each other.