论文标题

Sigma与Parafermion顶点操作员代数$ K(\ Mathfrak {sl} _2,K)$相关

Sigma involutions associated with parafermion vertex operator algebra $K(\mathfrak{sl}_2,k)$

论文作者

Lam, Ching Hung, Yamada, Hiromichi

论文摘要

parafermion顶点操作员代数$ k(\ mathfrak {sl} _2,k)$的不可修复的模块,如果$ k(\ mathfrak {sl} _2,k)$ k $ k $ k $ k $ k $ k $ k的融合代数的自动形态为$σ$ -Type。对于任何整数$ k \ ge 3 $,我们表明存在订单$ 2 $ $ k(\ mathfrak {sl} _2,k)^{\langleθ\ rangle} $ spann the irreducible the ucred的$ k(\ mathfrak {sl} _2,k) $ k(\ mathfrak {sl} _2,k)$ - 模块,其中$θ$是$ k(\ mathfrak {sl} _2,k)$的互动。我们还讨论了这种自动形态的一些例子。

An irreducible module for the parafermion vertex operator algebra $K(\mathfrak{sl}_2,k)$ is said to be of $σ$-type if an automorphism of the fusion algebra of $K(\mathfrak{sl}_2,k)$ of order $k$ is trivial on it. For any integer $k \ge 3$, we show that there exists an automorphism of order $2$ of the subalgebra of the fusion algebra of $K(\mathfrak{sl}_2,k)^{\langle θ\rangle}$ spanned by the irreducible direct summands of $σ$-type irreducible $K(\mathfrak{sl}_2,k)$-modules, where $θ$ is an involution of $K(\mathfrak{sl}_2,k)$. We discuss some examples of such an automorphism as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源