论文标题

高斯正交和符号合奏的高斯乘法混乱

Gaussian Multiplicative Chaos for Gaussian Orthogonal and Symplectic Ensembles

论文作者

Kivimae, Pax

论文摘要

我们研究高斯正交和符号合并的特征多项式。我们表明,对于这两个合奏,特征多项式的绝对值的幂均在法律上汇合到高斯乘法性混乱措施,以实现足够小的真实力量。主要工具是高斯正交,统一和符号合奏的绝对特征多项式分数之间的新渐近关系。

We study the characteristic polynomials of both the Gaussian Orthogonal and Symplectic Ensembles. We show that for both ensembles, powers of the absolute value of the characteristic polynomials converge in law to Gaussian multiplicative chaos measures after normalization for sufficiently small real powers. The main tool is a new asymptotic relation between the fractional moments of the absolute characteristic polynomials of Gaussian Orthogonal, Unitary, and Symplectic Ensembles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源