论文标题

可解释的图像聚类通过差异性感知k均值

Interpretable Image Clustering via Diffeomorphism-Aware K-Means

论文作者

Cosentino, Romain, Balestriero, Randall, Bahroun, Yanis, Sengupta, Anirvan, Baraniuk, Richard, Aazhang, Behnaam

论文摘要

我们设计了一种可解释的聚类算法,了解图像歧管的非线性结构。我们的方法利用了在图像空间中应用的$ k $ - 平均值的解释性,同时解决了其集群性能问题。具体而言,我们开发了图像和质心之间相似性的度量,该尺寸包括一般变形类别:差异性,使它们不变。我们的工作利用薄板样条插值技术有效地学习图像歧管的最佳形态。广泛的数值模拟表明,我们的方法与各种数据集上的最新方法竞争。

We design an interpretable clustering algorithm aware of the nonlinear structure of image manifolds. Our approach leverages the interpretability of $K$-means applied in the image space while addressing its clustering performance issues. Specifically, we develop a measure of similarity between images and centroids that encompasses a general class of deformations: diffeomorphisms, rendering the clustering invariant to them. Our work leverages the Thin-Plate Spline interpolation technique to efficiently learn diffeomorphisms best characterizing the image manifolds. Extensive numerical simulations show that our approach competes with state-of-the-art methods on various datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源