论文标题
非保守非线性schrödinger方程的全球动态
Global dynamics in nonconservative nonlinear Schrödinger equations
论文作者
论文摘要
在本文中,我们使用扰动和非扰动方法研究了一类非线性Schrödinger方程的全球动力学。我们证明,对于接近常数的初始条件,解决方案的半全球存在。也就是说,解决方案将存在所有积极的时间或所有负时间。还展示了一组开放的初始数据集,该数据在向前和向后的时间限制为零。这反过来又迫使任何实际分析保守量的不存在。对于二次情况,我们证明存在两个(无限的)非平稳平衡的(无限)家族,并证明存在杂斜轨道存在于向后时间限制非平凡的平衡,而在正则时间为零。通过时间逆转论点,我们还获得了杂斜轨道,这些轨道限制了向前时间的非平凡平衡,而在向后的时间为零。二次方程式的证明是计算机辅助的,并依赖于三种独立的成分:在平衡处的局部不稳定歧管的封闭,流动的严格整合(从不稳定的歧管开始)以及解决方案进入已验证的稳定集(因此将稳定集合给零)。
In this paper, we study the global dynamics of a class of nonlinear Schrödinger equations using perturbative and non-perturbative methods. We prove the semi-global existence of solutions for initial conditions close to constant. That is, solutions will exist for all positive time or all negative time. The existence of an open set of initial data which limits to zero in both forward and backward time is also demonstrated. This result in turn forces the non-existence of any real-analytic conserved quantities. For the quadratic case, we prove the existence of two (infinite) families of nontrivial unstable equilibria and prove the existence of heteroclinic orbits limiting to the nontrivial equilibria in backward time and to zero in forward time. By a time reversal argument, we also obtain heteroclinic orbits limiting to the nontrivial equilibria in forward time and to zero in backward time. The proofs for the quadratic equation are computer-assisted and rely on three separate ingredients: an enclosure of a local unstable manifold at the equilibria, a rigorous integration of the flow (starting from the unstable manifold) and a proof that the solution enters a validated stable set (hence showing convergence to zero).