论文标题
使用聚类技术检测动力学Vlasov混合模拟中的重新连接事件
Detecting Reconnection Events in Kinetic Vlasov Hybrid Simulations Using Clustering Techniques
论文作者
论文摘要
通过原位观测,数值模拟和理论模型对磁化空间等离子体中的动力学湍流进行了广泛的研究。在这种情况下,一个关键点涉及相干电流结构的形成及其通过磁重新连接的破坏。我们提出旨在检测大量数值模拟数据集的重新连接事件的自动技术。我们利用称为K-均值和DBSCAN的聚类技术(通常在文献中称为无监督的机器学习方法),以及基于标准重新连接代理的阈值的其他方法。我们所有的技术还使用所选区域的纵横比的阈值。我们测试算法的性能。我们建议在自动化机器学习算法中使用最佳纵横比:AR = 18。根据标准重新连接代理的阈值,无监督方法的性能在其他方法方面具有强大的竞争力。
Kinetic turbulence in magnetized space plasmas has been extensively studied via in situ observations, numerical simulations and theoretical models. In this context, a key point concerns the formation of coherent current structures and their disruption through magnetic reconnection. We present automatic techniques aimed at detecting reconnection events in large data set of numerical simulations. We make use of clustering techniques known as K-means and DBscan (usually referred in literature as unsupervised machine learning approaches), and other methods based on thresholds of standard reconnection proxies. All our techniques use also a threshold on the aspect ratio of the regions selected. We test the performance of our algorithms. We propose an optimal aspect ratio to be used in the automated machine learning algorithm: AR=18. The performance of the unsupervised approach results to be strongly competitive with respect to those of other methods based on thresholds of standard reconnection proxies.