论文标题

高阶LL*(FOSLL*)有限元方法的先验错误分析

A priori error analysis of high-order LL* (FOSLL*) finite element methods

论文作者

Keith, Brendan

论文摘要

近年来已经提出了许多非标准有限元方法,每种方法都来自特定类别的PDE限制的规范最小化问题。最著名的示例是$ \ Mathcal {l} \ Mathcal {l}^*$方法。在这项工作中,我们认为应该期望该类别中的所有高阶方法提供不合标准的H-重新收敛率。实际上,当精确解决方案是恒定函数时,甚至可能不会看到与多项式订单$ p> 1 $成比例的速率。我们表明,收敛速率受到额外的Lagrange乘数变量的规律性的限制,该变量自然会通过鞍点分析出现。反过来,出现有限的收敛速率,因为该拉格朗日乘数的规律性部分通过域的几何形状确定。数值实验支持我们的结论。

A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $\mathcal{L}\mathcal{L}^*$ methods. In this work, we argue that all high-order methods in this class should be expected to deliver substandard uniform h-refinement convergence rates. In fact, one may not even see rates proportional to the polynomial order $p > 1$ when the exact solution is a constant function. We show that the convergence rate is limited by the regularity of an extraneous Lagrange multiplier variable which naturally appears via a saddle-point analysis. In turn, limited convergence rates appear because the regularity of this Lagrange multiplier is determined, in part, by the geometry of the domain. Numerical experiments support our conclusions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源