论文标题

原始黑洞分布的磁场产生

Magnetic field generation from primordial black hole distributions

论文作者

Araya, Ignacio J., Rubio, Marcelo E., Martin, Marco San, Stasyszyn, Federico A., Padilla, Nelson D., Magana, Juan, Sureda, Joaquin

论文摘要

我们引入了一种统计方法,用于估计原始黑洞(PBH)种群产生的磁场波动。为此,我们考虑了单色和扩展的压力机PBH质量函数,因此每个组成部分都能够由于某些给定的物理机制而产生自己的磁场。假设磁场波动与物质过度密度之间存在线性相关性,我们的估计取决于质量功能,每个PBH成分的物理野外生成机制以及特征性的PBH分离。在计算磁场波动的功率谱之后,我们应用形式主义来研究两种特定的现场生成机制可能会根据当前的观察性约束引起预期的种子场的合理性。第一个机制是Biermann电池,第二个机制是由于PBH形成下的磁单翼量的积聚,构成了磁性PBH。我们的结果表明,对于单色分布,似乎不可能在两种现场生成机理中的任何一个中产生足够强烈的种子场。对于扩展的分布,也不可能仅假设使用Biermann电池机构来生成所需的种子场。实际上,我们通过该机制报告了一个平均种子场,约为10^{ - 47} g,在z = 20。对于磁单孔的情况,我们相反,我们假设获得了文献中的种子值并计算单托尔的必要数量密度。在这种情况下,我们获得的值低于当前约束的上限。

We introduce a statistical method for estimating magnetic field fluctuations generated from primordial black hole (PBH) populations. To that end, we consider monochromatic and extended Press-Schechter PBH mass functions, such that each constituent is capable of producing its own magnetic field due to some given physical mechanism. Assuming linear correlation between magnetic field fluctuations and matter over-densities, our estimates depend on the mass function, the physical field generation mechanism by each PBH constituent, and the characteristic PBH separation. After computing the power spectrum of magnetic field fluctuations, we apply our formalism to study the plausibility that two particular field generation mechanisms could have given rise to the expected seed fields according to current observational constraints. The first mechanism is the Biermann battery and the second one is due to the accretion of magnetic monopoles at PBH formation, constituting magnetic PBHs. Our results show that, for monochromatic distributions, it does not seem to be possible to generate sufficiently intense seed fields in any of the two field generation mechanisms. For extended distributions, it is also not possible to generate the required seed field by only assuming a Biermann battery mechanism. In fact, we report an average seed field by this mechanism of about 10^{-47} G, at z = 20. For the case of magnetic monopoles we instead assume that the seed values from the literature are achieved and calculate the necessary number density of monopoles. In this case we obtain values that are below the upper limits from current constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源