论文标题
饱和集,最佳轨道和平衡状态的拓扑结构
Topological structures on saturated sets, optimal orbits and equilibrium states
论文作者
论文摘要
Pfister and Sullivan proved that if a topological dynamical system $(X,T)$ satisfies almost product property and uniform separation property, then for each nonempty compact %convex subset $K$ of invariant measures, the entropy of saturated set $G_{K}$ satisfies \begin{equation}\label{Bowen's topological entropy} h_ {top}^{b}(t,t,g_ {k})= \ inf \ {h(t,μ):μ\ in k \},\ end {equation},其中$ h_ {pop}^{pop}^{b}(t,g_ {k}) $ h(t,μ)$是$μ$的kolmogorov-sinai熵。在本文中,我们通过用高容量熵和包装熵代替鲍恩的拓扑熵来研究$ g_ {k} $的拓扑复杂性,并获得以下公式:\ begin {equination {equation*} h_ {top}^{uc}(t,t,g_ {k})= h_ {top}(t,t,x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ h_ {top}^{pop}^{p}(t,g_ {k {k {k {k {k})= \ sup \ sup \ sup \ \ {h(t,t,μ) $ h_ {top}^{uc}(t,t,g_ {k})$是$ g_ {k {k} $和$ h_ {top}^{p}^{p}(t,g_ {k})$的$ t $的上能熵,是$ g_ {k_ {k_ {
Pfister and Sullivan proved that if a topological dynamical system $(X,T)$ satisfies almost product property and uniform separation property, then for each nonempty compact %convex subset $K$ of invariant measures, the entropy of saturated set $G_{K}$ satisfies \begin{equation}\label{Bowen's topological entropy} h_{top}^{B}(T,G_{K})=\inf\{h(T,μ):μ\in K\}, \end{equation} where $h_{top}^{B}(T,G_{K})$ is Bowen's topological entropy of $T$ on $G_{K}$, and $h(T,μ)$ is the Kolmogorov-Sinai entropy of $μ$. In this paper, we investigate topological complexity of $G_{K}$ by replacing Bowen's topological entropy with upper capacity entropy and packing entropy and obtain the following formulas: \begin{equation*} h_{top}^{UC}(T,G_{K})=h_{top}(T,X)\ \mathrm{and}\ h_{top}^{P}(T,G_{K})=\sup\{h(T,μ):μ\in K\}, \end{equation*} where $h_{top}^{UC}(T,G_{K})$ is the upper capacity entropy of $T$ on $G_{K}$ and $h_{top}^{P}(T,G_{K})$ is the packing entropy of $T$ on $G_{K}.$ In the proof of these two formulas, uniform separation property is unnecessary.