论文标题
耦合非线性振荡器的拓扑同步
Topological synchronization of coupled nonlinear oscillators
论文作者
论文摘要
耦合振荡器的同步是整个自然界中发现的一种普遍存在的现象。它的强大认识对于我们对各种非线性系统的理解至关重要,从生物学功能到电气工程。在凝结物理学的另一个方面,拓扑被用来实现诸如拓扑边缘模式之类的强大特性,如著名的拓扑绝缘子所证明的那样。在这里,我们整合了这两种研究途径,并提出了一种非线性拓扑现象,即拓扑同步,其中只有边缘振荡器同步,而散装振荡器则表现出混乱的动力学。我们分析了具体的原型模型,以证明存在沿边缘定位的阳性Lyapunov指数和Lyapunov载体的存在。作为非线性系统拓扑的独特特征,我们发现非常规的额外拓扑边界模式出现在新兴的有效边界处。此外,我们的建议显示了空间控制同步的希望,例如按需模式设计和缺陷检测。拓扑同步可能普遍存在拓扑非线性振荡器中,因此可以提供指导原理,以稳健,几何和灵活的方式实现同步。
Synchronization of coupled oscillators is a ubiquitous phenomenon found throughout nature. Its robust realization is crucial to our understanding of various nonlinear systems, ranging from biological functions to electrical engineering. On another front, in condensed matter physics, topology is utilized to realize robust properties like topological edge modes, as demonstrated by celebrated topological insulators. Here, we integrate these two research avenues and propose a nonlinear topological phenomenon, namely topological synchronization, where only the edge oscillators synchronize while the bulk ones exhibit chaotic dynamics. We analyze concrete prototypical models to demonstrate the presence of positive Lyapunov exponents and Lyapunov vectors localized along the edge. As a unique characteristic of topology in nonlinear systems, we find that unconventional extra topological boundary modes appear at emerging effective boundaries. Furthermore, our proposal shows promise for spatially controlling synchronization, such as on-demand pattern designing and defect detection. The topological synchronization can ubiquitously appear in topological nonlinear oscillators and thus can provide a guiding principle to realize synchronization in a robust, geometrical, and flexible way.