论文标题

人口可以在转移环境中使用非局部分散剂存活吗?

Can a population survive in a shifting environment using non-local dispersion

论文作者

Coville, Jérôme

论文摘要

In this article, we analyse the non-local model : $\partial$ t U (t, x) = J $\star$ U (t, x) -- U (t, x) + f (x -- ct, U (t, x)) for t > 0, and x $\in$ R, where J is a positive continuous dispersal kernel and f (x, s) is a heterogeneous KPP type non-linearity describing the growth rate of the 人口。假定人口的生态位是有界的(即在紧凑的集合外,假定环境对人口具有致命性),并以恒定的速度c进行了转移。对于紧凑型的分散核J,假设人口存活,我们证明存在一个临界速度C *,$ \ pm $和c * *,$ \ pm $,以至于所有人 - c *, - c *, - <c <c *,+ c <c <c *,+当时人口将在c $ c $ c $ c * $ c * $ c *,+ c $ $ $ - c *时丧命,为了得出此结果,我们首先根据速度C的速度C的非局部问题获得最佳的持久性标准。 Namely, we prove that for a positive speed c the population persists if and only if the generalized principal eigenvalue $λ$ p of the linear problem cD x [$Φ$] + J $\star$ $Φ$ -- $Φ$ + $\partial$ s f (x, 0)$Φ$ + $λ$ p $Φ$ = 0 in R, is negative. $λ$ p是我们本着椭圆操作员的广义第一特征值精神定义的光谱数量。速度C *,$ \ pm $和c * *,然后通过对c相对于c的$λ$ p的属性进行精细分析来获得PM。特别是,我们建立了相对于速度c的连续性。另外,对于任何连续有界的非负初始数据,我们建立了解决方案u(t,x)的长时间行为。

In this article, we analyse the non-local model : $\partial$ t U (t, x) = J $\star$ U (t, x) -- U (t, x) + f (x -- ct, U (t, x)) for t > 0, and x $\in$ R, where J is a positive continuous dispersal kernel and f (x, s) is a heterogeneous KPP type non-linearity describing the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside a compact set, the environment is assumed to be lethal for the population) and shifted through time at a constant speed c. For compactly supported dispersal kernels J, assuming that for c = 0 the population survive, we prove that there exists a critical speeds c * ,$\pm$ and c * * ,$\pm$ such that for all --c * ,-- < c < c * ,+ then the population will survive and will perish when c $\ge$ c * * ,+ or c $\le$ --c * * ,--. To derive this results we first obtain an optimal persistence criteria depending of the speed c for non local problem with a drift term. Namely, we prove that for a positive speed c the population persists if and only if the generalized principal eigenvalue $λ$ p of the linear problem cD x [$Φ$] + J $\star$ $Φ$ -- $Φ$ + $\partial$ s f (x, 0)$Φ$ + $λ$ p $Φ$ = 0 in R, is negative. $λ$ p is a spectral quantity that we defined in the spirit of the generalized first eigenvalue of an elliptic operator. The speeds c * ,$\pm$ and c * * ,pm are then obtained through a fine analysis of the properties of $λ$ p with respect to c. In particular, we establish its continuity with respect to the speed c. In addition, for any continuous bounded non-negative initial data, we establish the long time behaviour of the solution U (t, x).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源