论文标题

预测MOBA游戏中的事件:预测,归因和评估

Predicting Events in MOBA Games: Prediction, Attribution, and Evaluation

论文作者

Yang, Zelong, Wang, Yan, Li, Piji, Lin, Shaobin, Shi, Shuming, Huang, Shao-Lun, Bi, Wei

论文摘要

近年来,多人在线战场(MOBA)游戏变得越来越受欢迎。因此,许多努力致力于为他们提供游戏前或游戏中的预测。但是,这些作品在以下两个方面受到限制:1)缺乏足够的游戏功能; 2)预测结果中没有解释性。这两个局限性极大地限制了当前作品的实际绩效和工业应用。在这项工作中,我们收集并发布了一个大规模数据集,其中包含丰富的游戏内功能,以获得流行的MOBA游戏荣誉。然后,我们建议使用两种基于梯度的归因方法将预测归因于输入特征,以一种可解释的方式预测四种重要事件:集成梯度和SmoothGrad。为了评估不同模型和归因方法的解释能力,进一步提出了基于忠诚度的评估指标。最后,我们评估了收集到的数据集上几种竞争方法的准确性和忠诚度,以评估机器在MOBA游戏中的预测如何预测事件。

The multiplayer online battle arena (MOBA) games have become increasingly popular in recent years. Consequently, many efforts have been devoted to providing pre-game or in-game predictions for them. However, these works are limited in the following two aspects: 1) the lack of sufficient in-game features; 2) the absence of interpretability in the prediction results. These two limitations greatly restrict the practical performance and industrial application of the current works. In this work, we collect and release a large-scale dataset containing rich in-game features for the popular MOBA game Honor of Kings. We then propose to predict four types of important events in an interpretable way by attributing the predictions to the input features using two gradient-based attribution methods: Integrated Gradients and SmoothGrad. To evaluate the explanatory power of different models and attribution methods, a fidelity-based evaluation metric is further proposed. Finally, we evaluate the accuracy and Fidelity of several competitive methods on the collected dataset to assess how well machines predict events in MOBA games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源