论文标题
在混合渠道上的年龄安排
Age-optimal Scheduling over Hybrid Channels
论文作者
论文摘要
当源可以在两个异质通道上传输状态更新时,我们考虑将信息年龄最小化的问题。我们的工作是由5G MMWave技术的最新发展激发的,在这种情况下,传播可能会出现在不可靠但快速(例如MMWave)渠道或缓慢的可靠(例如Sub-6GHz)渠道上。当通道处于“ ON”状态时,不可靠的通道以高速率建模为与时间相关的吉尔伯特 - elliot通道。可靠的通道提供了确定性但较低的数据速率。调度策略确定了在每个时间插槽中用于传输的通道,旨在最大程度地减少信息平均年龄(AOI)。最佳的调度问题被提出为马尔可夫决策过程(MDP),这是一个挑战,因为超模块化在状态空间的一部分中不存在。我们应对这一挑战,并表明多维阈值计划策略对于最小化年龄是最佳的。通过利用MDP的结构并分析阈值类型策略的离散时间马尔可夫链(DTMC),我们设计了低复杂性一分配算法来计算最佳阈值。我们使用数值模拟比较不同的调度策略。
We consider the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel at a high rate when the channel is in the 'ON' state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission in each time slot, aiming to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which is challenging to solve because super-modularity does not hold in a part of the state space. We address this challenge and show that a multi-dimensional threshold-type scheduling policy is optimal for minimizing the age. By exploiting the structure of the MDP and analyzing the discrete-time Markov chains (DTMCs) of the threshold-type policy, we devise a low-complexity bisection algorithm to compute the optimal thresholds. We compare different scheduling policies using numerical simulations.