论文标题

扩展的环状代码,最大弧和卵形

Extended cyclic codes, maximal arcs and ovoids

论文作者

Abdukhalikov, Kanat, Ho, Duy

论文摘要

我们表明,$ \ mathbb {f} _q $带有参数$ [q+2,3,q] $,$ q = 2^m $,确定常规hyperovals。我们还表明,具有参数的扩展循环代码$ [qt-q+t,3,qt-q] $,$ 1 <t <q $,确定(循环)Denniston Maximal Arcs。同样,具有参数的环状代码$ [q^2+1,4,q^2-q] $等效于$ pg(3,q)$中从椭圆四边形获得的卵形代码。最后,我们在$ pg(2,q)$和椭圆式四边形(3,q)$中提供了Denniston Maximal Arcs的新简单演示。

We show that extended cyclic codes over $\mathbb{F}_q$ with parameters $[q+2,3,q]$, $q=2^m$, determine regular hyperovals. We also show that extended cyclic codes with parameters $[qt-q+t,3,qt-q]$, $1<t<q$, determine (cyclic) Denniston maximal arcs. Similarly, cyclic codes with parameters $[q^2+1,4,q^2-q]$ are equivalent to ovoid codes obtained from elliptic quadrics in $PG(3,q)$. Finally, we give new simple presentations of Denniston maximal arcs in $PG(2,q)$ and elliptic quadrics in $PG(3,q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源