论文标题
每个像素偏置对比度阈值的摄像机校准
Event Camera Calibration of Per-pixel Biased Contrast Threshold
论文作者
论文摘要
事件摄像机输出异步事件,即使在极端的照明条件下,也会以高时间分辨率来表示强度变化。当前,大多数现有作品都使用单个对比度阈值来估计所有像素的强度变化。但是,复杂的电路偏置和制造瑕疵会导致像素之间产生偏见的像素和不匹配的对比阈值,这可能导致不良输出。在本文中,我们提出了一种新的事件相机模型和两种校准方法,这些方法涵盖了仅活动的相机和混合图像事件摄像机。当同时提供强度图像与事件一起提供时,我们还提出了一种有效的在线方法来校准适应时间变化事件速率的事件摄像机。与几个不同事件摄像机数据集中的最新方法相比,我们证明了我们提出的方法的优势。
Event cameras output asynchronous events to represent intensity changes with a high temporal resolution, even under extreme lighting conditions. Currently, most of the existing works use a single contrast threshold to estimate the intensity change of all pixels. However, complex circuit bias and manufacturing imperfections cause biased pixels and mismatch contrast threshold among pixels, which may lead to undesirable outputs. In this paper, we propose a new event camera model and two calibration approaches which cover event-only cameras and hybrid image-event cameras. When intensity images are simultaneously provided along with events, we also propose an efficient online method to calibrate event cameras that adapts to time-varying event rates. We demonstrate the advantages of our proposed methods compared to the state-of-the-art on several different event camera datasets.