论文标题
ISD:通过迭代相似性蒸馏的自我监督学习
ISD: Self-Supervised Learning by Iterative Similarity Distillation
论文作者
论文摘要
最近,与其他随机图像相比,对比度学习在自我监督的学习中取得了巨大的成果,其中的主要思想是将图像的两个增强(正对)靠近(正对)。我们认为并非所有随机图像都是相等的。因此,我们引入了一种自我监督的学习算法,在该算法中,我们使用软图像的软相似性,而不是正面和负面对之间的二进制区别。我们通过捕获查询图像与某些随机图像的相似性并将这些知识传递给学生,从而迭代地将一种缓慢发展的教师模型提炼为学生模型。我们认为,与最近的对比学习方法相比,我们的方法受到的限制较少,因此它可以学习更好的功能。具体而言,我们的方法应比现有的对比学习方法更好地处理不平衡和未标记的数据,因为随机选择的负面组可能包括许多与查询图像在语义上相似的样本。在这种情况下,我们的方法将它们标记为高度相似,而标准对比方法将它们标记为负对。我们的方法与最先进的模型取得了可比的结果。我们还表明,我们的方法在未标记数据不平衡的设置中的性能更好。我们的代码可在此处提供:https://github.com/umbcvision/isd。
Recently, contrastive learning has achieved great results in self-supervised learning, where the main idea is to push two augmentations of an image (positive pairs) closer compared to other random images (negative pairs). We argue that not all random images are equal. Hence, we introduce a self supervised learning algorithm where we use a soft similarity for the negative images rather than a binary distinction between positive and negative pairs. We iteratively distill a slowly evolving teacher model to the student model by capturing the similarity of a query image to some random images and transferring that knowledge to the student. We argue that our method is less constrained compared to recent contrastive learning methods, so it can learn better features. Specifically, our method should handle unbalanced and unlabeled data better than existing contrastive learning methods, because the randomly chosen negative set might include many samples that are semantically similar to the query image. In this case, our method labels them as highly similar while standard contrastive methods label them as negative pairs. Our method achieves comparable results to the state-of-the-art models. We also show that our method performs better in the settings where the unlabeled data is unbalanced. Our code is available here: https://github.com/UMBCvision/ISD.