论文标题

哈伯德模型的早期耐故障模拟

Early fault-tolerant simulations of the Hubbard model

论文作者

Campbell, Earl T.

论文摘要

Hubbard模型的模拟是易于故障量子计算机的第一个有用应用的领先候选者。最近对Hubbard模型早期模拟的量子算法的研究[Kivlichan \ TextIt {et al。}量子4 296(2019)]发现,最低的资源成本是通过拆分操作器Trotterterization实现的,结合了快速的毛皮傅立叶变换(FFFT),$ l $ l $ $ $ $ $ $ $ $ lattice。在长度$ l \ neq 2^k $的晶格上,可以使用givens旋转代替FFFT,但会导致资源成本更高。我们提出了一种新的分析方法,用于界限由于Trotterization引起的模拟误差,该方法为拆分操作员FFFT方法提供了更严格的界限,从而导致$ 16 \ times $改善误差范围。此外,我们介绍了适用于任何尺寸晶格的Plaquette Trotterterization,并应用了我们改进的错误绑定分析以显示有竞争力的资源成本。我们考虑一项阶段估计任务并显示plaquette Trotterization将非克利福德门的数量减少了$ 5.5 \ tims $ $ $ 5.5 \ $ 9 \ times $(取决于参数制度),而不是先前的估计$ 8 \ times 8 $ 8 $和$ 16 \ $ 16 \ times times times times 16 $ 16 $ lattices,以及其他latte lattices sizes shoune lattices siess note lattices nots not note note not not fors。总之,我们发现使用大约一百万个toffoli大门有一个潜在的有用应用程序用于容忍故障的量子计算机。

Simulation of the Hubbard model is a leading candidate for the first useful applications of a fault-tolerant quantum computer. A recent study of quantum algorithms for early simulations of the Hubbard model [Kivlichan \textit{et al.} Quantum 4 296 (2019)] found that the lowest resource costs were achieved by split-operator Trotterization combined with the fast-fermionic Fourier transform (FFFT) on an $L \times L$ lattice with length $L=2^k$. On lattices with length $L \neq 2^k$, Givens rotations can be used instead of the FFFT but lead to considerably higher resource costs. We present a new analytic approach to bounding the simulation error due to Trotterization that provides much tighter bounds for the split-operator FFFT method, leading to $16 \times$ improvement in error bounds. Furthermore, we introduce plaquette Trotterization that works on any size lattice and apply our improved error bound analysis to show competitive resource costs. We consider a phase estimation task and show plaquette Trotterization reduces the number of non-Clifford gates by a factor $5.5\times$ to $9 \times$ (depending on the parameter regime) over the best previous estimates for $8 \times 8$ and $16 \times 16$ lattices and a much larger factor for other lattice sizes not of the form $L=2^k$. In conclusion, we find there is a potentially useful application for fault-tolerant quantum computers using around one million Toffoli gates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源