论文标题
基于时间和空间平均的波动热力学
Thermodynamics of fluctuations based on time-and-space averages
论文作者
论文摘要
我们通过使用时间和空间的平均值作为一种普遍的方式来开发非平衡理论,以一种在非共性系统中进行高档热力学的方法。该方法提供了有关波动系统中能量动态的经典观点。在这种情况下考虑时,熵产生的速率被证明是显式依赖性的。我们表明,尽管任何固定过程都可以表示为零熵的产生,但由于热和工作是基于能量的保护,因此保留了Clausius定理引起的第二定律约束。作为演示,我们考虑了Carnot循环和麦克斯韦的恶魔的能量动力学。然后,我们考虑非平稳过程,应用时间和空间平均值来表征存在诸如组成梯度之类的能屏障的异质系统中的非效应效应。我们表明,派生的理论可用于理解fick定律以较小长度尺度但不尺寸的系统适用的系统中异常扩散现象的起源。然后,我们表征毛细血管主导的系统的波动,由于合作事件的不可逆性,它们是非平稳的。
We develop non-equilibrium theory by using averages in time and space as a generalized way to upscale thermodynamics in non-ergodic systems. The approach offers a classical perspective on the energy dynamics in fluctuating systems. The rate of entropy production is shown to be explicitly scale dependent when considered in this context. We show that while any stationary process can be represented as having zero entropy production, second law constraints due to the Clausius theorem are preserved due to the fact that heat and work are related based on conservation of energy. As a demonstration we consider the energy dynamics for the Carnot cycle and for Maxwell's demon. We then consider non-stationary processes, applying time-and-space averages to characterize non-ergodic effects in heterogeneous systems where energy barriers such as compositional gradients are present. We show that the derived theory can be used to understand the origins of anomalous diffusion phenomena in systems where Fick's law applies at small length scales but not at large length scales. We then characterize fluctuations in capillary-dominated systems, which are non-stationary due to the irreversibility of cooperative events.