论文标题

用于计算准电位的数据驱动方法

A Data Driven Method for Computing Quasipotentials

论文作者

Lin, Bo, Li, Qianxiao, Ren, Weiqing

论文摘要

准能力是能量函数概念对非平衡系统的自然概括。在对随机动力学中罕见事件的分析中,它在表征过渡事件和可能的过渡路径的统计数据中起着核心作用。但是,计算准能力是具有挑战性的,尤其是在寻求全球景观的高维动力系统中。基于动态编程原理或路径空间最小化的传统方法往往会受到维数的诅咒。在本文中,我们提出了一种简单有效的机器学习方法来解决此问题。关键思想是学习驱动动力学的向量场的正交分解,从中可以识别出二键率。我们在各种示例系统上证明了我们的方法可以有效地计算准景观,而无需空间离散或解决路径空间优化问题。此外,该方法纯粹是数据驱动的,因为仅观察到的动力学轨迹才能计算准能力。这些属性使其成为一种有前途的方法,可以使准分析在远离平衡的动态系统中进行一般应用。

The quasipotential is a natural generalization of the concept of energy functions to non-equilibrium systems. In the analysis of rare events in stochastic dynamics, it plays a central role in characterizing the statistics of transition events and the likely transition paths. However, computing the quasipotential is challenging, especially in high dimensional dynamical systems where a global landscape is sought. Traditional methods based on the dynamic programming principle or path space minimization tend to suffer from the curse of dimensionality. In this paper, we propose a simple and efficient machine learning method to resolve this problem. The key idea is to learn an orthogonal decomposition of the vector field that drives the dynamics, from which one can identify the quasipotential. We demonstrate on various example systems that our method can effectively compute quasipotential landscapes without requiring spatial discretization or solving path-space optimization problems. Moreover, the method is purely data driven in the sense that only observed trajectories of the dynamics are required for the computation of the quasipotential. These properties make it a promising method to enable the general application of quasipotential analysis to dynamical systems away from equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源