论文标题

分化下多项式根的流动

The Flow of Polynomial Roots Under Differentiation

论文作者

Kiselev, Alexander, Tan, Changhui

论文摘要

关于分化的多项式零零之间差距的行为的问题是经典的,可以追溯到马塞尔·里斯。在本文中,我们分析了Stefan Steinerberger正式得出的非局部非线性部分微分方程,以模拟分化下多项式的根部动力学。有趣的是,最近也通过Dimitri Shlyakhtenko和Terence Tao正式获得了相同的方程式,作为一个量度的自由分数卷积的进化方程 - 一种自由概率的对象,这也与随机矩阵的次要过程有关。部分微分方程与用于描述数学生物学中代理(例如鸟类,鱼类或机器人)的集体行为的流体动力学模型具有显着相似之处。我们考虑周期性设置,并显示与严格阳性平滑初始数据相对应的解决方案的时间收敛到均匀密度的全局规律性和指数呈指数。在本文的第二部分中,我们将Steinerberger的PDE的严格解决方案与一类三角多项式分化的根的进化联系起来。也就是说,我们证明多项式的衍生物的零和PDE的相应溶液的分布始终保持近距离。全局时间控制遵循对误差方程的传播的分析,事实证明这是一个非线性分数热方程,其主要项类似于调制的离散分数laplacian $( - δ)^{1/2} $。

The question about the behavior of gaps between zeros of polynomials under differentiation is classical and goes back to Marcel Riesz. In this paper, we analyze a nonlocal nonlinear partial differential equation formally derived by Stefan Steinerberger to model dynamics of roots of polynomials under differentiation. Interestingly, the same equation has also been recently obtained formally by Dimitri Shlyakhtenko and Terence Tao as the evolution equation for free fractional convolution of a measure - an object in free probability that is also related to minor processes for random matrices. The partial differential equation bears striking resemblance to hydrodynamic models used to describe the collective behavior of agents (such as birds, fish or robots) in mathematical biology. We consider periodic setting and show global regularity and exponential in time convergence to uniform density for solutions corresponding to strictly positive smooth initial data. In the second part of the paper we connect rigorously solutions of the Steinerberger's PDE and evolution of roots under differentiation for a class of trigonometric polynomials. Namely, we prove that the distribution of the zeros of the derivatives of a polynomial and the corresponding solutions of the PDE remain close for all times. The global in time control follows from the analysis of the propagation of errors equation, which turns out to be a nonlinear fractional heat equation with the main term similar to the modulated discretized fractional Laplacian $(-Δ)^{1/2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源