论文标题
一些Neumann-Bessel系列和多边形的Laplacian
Some Neumann-Bessel series and the Laplacian on polygons
论文作者
论文摘要
评估具有贝塞尔和三角函数的诺伊曼级数的几和数量,作为三角函数的有限总和。它们是由常规多边形中拉普拉斯元素征收特征状态的诺伊曼膨胀的概括引起的。
Several sums of Neumann series with Bessel and trigonometric functions are evaluated, as finite sums of trigonometric functions. They arise from a generalization of the Neumann expansion of the eigenstates of the Laplacian in regular polygons.