论文标题
生物医学实体链接的轻型神经模型
A Lightweight Neural Model for Biomedical Entity Linking
论文作者
论文摘要
链接的生物医学实体旨在将生物医学提及(例如疾病和药物)映射到给定知识库中的标准实体。在这种情况下,具体的挑战是,相同的生物医学实体可以具有广泛的名称,包括同义词,形态变化和具有不同单词顺序的名称。最近,基于BERT的方法已通过允许文字序列的丰富表示来提高最新方法。但是,他们通常具有数亿个参数,并且需要大量的计算资源,这将其应用程序限制为有限的方案。在这里,我们提出了一种用于生物医学实体链接的轻量级神经方法,该方法仅需要BERT模型的参数的一小部分,而计算资源则更少。我们的方法使用一个简单的对齐层和注意机制来捕获提及和实体名称之间的变化。但是,我们表明我们的模型与先前在标准评估基准的工作具有竞争力。
Biomedical entity linking aims to map biomedical mentions, such as diseases and drugs, to standard entities in a given knowledge base. The specific challenge in this context is that the same biomedical entity can have a wide range of names, including synonyms, morphological variations, and names with different word orderings. Recently, BERT-based methods have advanced the state-of-the-art by allowing for rich representations of word sequences. However, they often have hundreds of millions of parameters and require heavy computing resources, which limits their applications in resource-limited scenarios. Here, we propose a lightweight neural method for biomedical entity linking, which needs just a fraction of the parameters of a BERT model and much less computing resources. Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names. Yet, we show that our model is competitive with previous work on standard evaluation benchmarks.