论文标题
Riemannian歧管上的Schr {Ö} dinger操作员的下限
Lower bound of Schr{ö}dinger operators on Riemannian manifolds
论文作者
论文摘要
我们表明,加权流形,承认相对的Faber Krahn不平等承认Fefferman phong不平等v $ψ$,$ψ$ $ $ \ le $ \ le $ \ le $ cv $ψ$ 2 $ 2不断取决于V的Morrey Norm,我们从IT的条件下,对L 2 Hardy for L 2 Hardy of Suthers of Surders for Schors for Schr and Schr} schr}}}}}}}我们还获得了Schr {Ö} dinger操作员的光谱底部的估计值。
We show that a weighted manifold which admits a relative Faber Krahn inequality admits the Fefferman Phong inequality V $ψ$, $ψ$ $\le$ CV $ψ$ 2 , with the constant depending on a Morrey norm of V , and we deduce from it a condition for a L 2 Hardy inequality to holds, as well as conditions for Schr{ö}dinger operators to be positive. We also obtain an estimate on the bottom of the spectrum for Schr{ö}dinger operators.