论文标题
信息扩散预测与潜在因子分解
Information Diffusion Prediction with Latent Factor Disentanglement
论文作者
论文摘要
信息扩散预测是一项基本任务,可以预测信息项将如何在用户之间传播。近年来,基于深度学习的方法,尤其是基于经常性神经网络(RNN)的方法,通过将受感染的用户视为顺序数据,从而在此任务上取得了有希望的结果。但是,现有方法代表所有先前感染的用户单个向量,并且由于模式崩溃问题,可能无法编码所有必要的信息以进行未来的预测。为了解决这个问题,我们建议采用分解表示表示学习的概念,该学习旨在提取代表数据不同方面的多个潜在因素,以对信息扩散过程进行建模。具体而言,我们采用顺序注意模块和一个分离的注意模块来更好地汇总历史信息并解开潜在因素。三个现实世界数据集的实验结果表明,提出的模型SIDDA的表现明显优于最先进的基线方法,最高可高达14%的命中率@n Metric,这证明了我们方法的有效性。
Information diffusion prediction is a fundamental task which forecasts how an information item will spread among users. In recent years, deep learning based methods, especially those based on recurrent neural networks (RNNs), have achieved promising results on this task by treating infected users as sequential data. However, existing methods represent all previously infected users by a single vector and could fail to encode all necessary information for future predictions due to the mode collapse problem. To address this problem, we propose to employ the idea of disentangled representation learning, which aims to extract multiple latent factors representing different aspects of the data, for modeling the information diffusion process. Specifically, we employ a sequential attention module and a disentangled attention module to better aggregate the history information and disentangle the latent factors. Experimental results on three real-world datasets show that the proposed model SIDDA significantly outperforms state-of-the-art baseline methods by up to 14% in terms of hits@N metric, which demonstrates the effectiveness of our method.