论文标题
使用低衰减模型优化有限的卡诺引擎的自持够了
Self-consistency of optimizing finite-time Carnot engines with the low-dissipation model
论文作者
论文摘要
使用低消耗模型建立的有限时间Carnot发动机的最大功率效率(EMP)的效率非常依赖于对不可逆熵一代$δS^{(\ MATHRM {ir {ir})} $的反相反比例缩放的假设。 $ΔS^{(\ Mathrm {ir})} \ propto1/τ$。 EMP的有限时间等热过程的最佳操作时间必须在反比例缩放的有效范围内。但是,由于$ 1/τ$尺度的未知系数,这种一致性未进行测试。在本文中,使用两级原子加热引擎作为说明,我们揭示了使用低移动模型的有限时间Carnot引擎的优化仅在$η_ {\ Mathrm {C}}} \ ll1 $的$η_{\ Mathrm {c}} \ ll1 $的状态下是自矛盾的。在大 - $η_{\ mathrm {c}} $制度中,使用低径流模型获得的EMP的操作时间不在$ 1/τ$ -Scaling的有效态度之内$η_{+} =η_{\ Mathrm {c}}}/(2-η_{\ Mathrm {c}}})$
The efficiency at the maximum power (EMP) for finite-time Carnot engines established with the low-dissipation model, relies significantly on the assumption of the inverse proportion scaling of the irreversible entropy generation $ΔS^{(\mathrm{ir})}$ on the operation time $τ$, i.e., $ΔS^{(\mathrm{ir})}\propto1/τ$. The optimal operation time of the finite-time isothermal process for EMP has to be within the valid regime of the inverse proportion scaling. Yet, such consistency was not tested due to the unknown coefficient of the $1/τ$-scaling. In this paper, using a two-level atomic heat engine as an illustration, we reveal that the optimization of the finite-time Carnot engines with the low-dissipation model is self-consistent only in the regime of $η_{\mathrm{C}}\ll1$, where $η_{\mathrm{C}}$ is the Carnot efficiency. In the large-$η_{\mathrm{C}}$ regime, the operation time for EMP obtained with the low-dissipation model is not within the valid regime of the $1/τ$-scaling, and the exact EMP is found to surpass the well-known bound $η_{+}=η_{\mathrm{C}}/(2-η_{\mathrm{C}})$