论文标题

大规模异步移动边缘计算的任务卸载:索引策略方法

Task Offloading for Large-Scale Asynchronous Mobile Edge Computing: An Index Policy Approach

论文作者

Xu, Yizhen, Cheng, Peng, Chen, Zhuo, Ding, Ming, Vucetic, Branka, Li, Yonghui

论文摘要

移动边缘计算(MEC)将计算任务从无线设备转换为网络边缘,并启用实时信息传输和计算。大多数现有的工作涉及小型同步MEC系统。在本文中,我们专注于具有随机任务到达,独特的工作负载和不同截止日期的大规模异步MEC系统。我们将卸载策略设计作为一种不安的多军强盗(RMAB),以最大程度地提高时间范围的折扣奖励。但是,公式的RMAB与Pspace-Hard顺序决策问题有关,该问题是棘手的。为了解决这个问题,通过利用Whittle索引(WI)理论,我们严格地建立了WI索引性并得出可扩展的封闭形式解决方案。因此,在我们的WI策略中,每个用户只需要计算其WI并将其报告给BS,并且选择了最高指数的用户以进行任务卸载。此外,当任务完成率成为焦点时,将较短的松弛时间剩余工作量(STLW)优先规则降低到WI策略中以提高性能。当用户的知识在卸载之前无法卸载能源消耗时,我们会制定贝叶斯学习支持的WI政策,包括最大似然估计,以前具有共轭的贝叶斯学习以及先前的交换技术。仿真结果表明,所提出的政策大大优于其他现有政策。

Mobile-edge computing (MEC) offloads computational tasks from wireless devices to network edge, and enables real-time information transmission and computing. Most existing work concerns a small-scale synchronous MEC system. In this paper, we focus on a large-scale asynchronous MEC system with random task arrivals, distinct workloads, and diverse deadlines. We formulate the offloading policy design as a restless multi-armed bandit (RMAB) to maximize the total discounted reward over the time horizon. However, the formulated RMAB is related to a PSPACE-hard sequential decision-making problem, which is intractable. To address this issue, by exploiting the Whittle index (WI) theory, we rigorously establish the WI indexability and derive a scalable closed-form solution. Consequently, in our WI policy, each user only needs to calculate its WI and report it to the BS, and the users with the highest indices are selected for task offloading. Furthermore, when the task completion ratio becomes the focus, the shorter slack time less remaining workload (STLW) priority rule is introduced into the WI policy for performance improvement. When the knowledge of user offloading energy consumption is not available prior to the offloading, we develop Bayesian learning-enabled WI policies, including maximum likelihood estimation, Bayesian learning with conjugate prior, and prior-swapping techniques. Simulation results show that the proposed policies significantly outperform the other existing policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源