论文标题
从头算在固体中的超快自旋动力学
Ab initio Ultrafast Spin Dynamics in Solids
论文作者
论文摘要
自旋松弛和脱谐性是自旋三位型和基于自旋的量子信息科学的核心。当前,迫切需要准确地预测一般固体的自旋松弛的理论方法,包括必要的散射途径,并且迫切需要NS到MS模拟时间。我们提出了基于lindblad动力学的第一原理实时密度 - 矩阵方法,以模拟通用固态系统的超快自旋动力学。通过对泵,探测和散射过程的完整第一原理描述,包括电子音波,电子功能强度和电子电子散射,并具有自洽的电子自旋轨耦合,我们的方法可以直接模拟在任何温度和doping and doping和doping corping and ns couplated Spin和Electon Dynamics couplast pumbobe测量的测量。我们首先将此方法应用于原型系统GAA,并与实验获得了极好的一致性。我们发现,自旋和载体弛豫过程之间不同散射机制和声子模式的相对贡献有很大差异。与以前基于模型的哈密顿人的工作形成鲜明对比的是,我们指出,在室温下,电子电子散射可以忽略不计,但在低温下占主导地位,可以在N型GAA中进行自旋松弛。我们进一步研究了新型的自旋 - valleytronic材料中的超快动态 - 单层和具有现实缺陷的双层WSE2。我们发现自旋松弛对局部对称性和缺陷周围的化学键高度敏感。我们的工作为固体中的旋转动力学提供了一个预测性计算平台,该平台具有前所未有的潜力,用于设计新材料,非常适合自旋和量子信息技术。
Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum information science. Currently, theoretical approaches that can accurately predict spin relaxation of general solids including necessary scattering pathways and capable for ns to ms simulation time are urgently needed. We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems. Through the complete first-principles descriptions of pump, probe and scattering processes including electron-phonon, electron-impurity and electron-electron scatterings with self-consistent electronic spin-orbit couplings, our method can directly simulate the ultrafast pump-probe measurements for coupled spin and electron dynamics over ns at any temperatures and doping levels. We first apply this method to a prototypical system GaAs and obtain excellent agreement with experiments. We find that the relative contributions of different scattering mechanisms and phonon modes differ considerably between spin and carrier relaxation processes. In sharp contrast to previous work based on model Hamiltonians, we point out that the electron-electron scattering is negligible at room temperature but becomes dominant at low temperatures for spin relaxation in n-type GaAs. We further examine ultrafast dynamics in novel spin-valleytronic materials - monolayer and bilayer WSe2 with realistic defects. We find that spin relaxation is highly sensitive to local symmetry and chemical bonds around defects. Our work provides a predictive computational platform for spin dynamics in solids, which has unprecedented potentials for designing new materials ideal for spintronics and quantum information technology.