论文标题

对话:多方对话情感识别多合一的XLNET

DialogXL: All-in-One XLNet for Multi-Party Conversation Emotion Recognition

论文作者

Shen, Weizhou, Chen, Junqing, Quan, Xiaojun, Xie, Zhixian

论文摘要

本文通过预先训练的语言模型介绍了我们在对话(ERC)中为情感识别(ERC)的开创性努力。与常规文档不同,对话说法从不同的各方出现,通常在以前的工作中作为等级结构组织。这样的结构不利于应用预训练的语言模型(例如XLNET)。为了解决这个问题,我们提出了一个多合一的XLNET模型,即DialoGXL,具有增强的内存,以存储更长的历史上下文和对话 - 意识到的自我关注,以处理多方结构。具体而言,我们首先将XLNET的复发机制从段级别级别转换为话语级别,以便更好地对话数据进行建模。其次,我们在XLNET中替换XLNET的Vanilla自我注意时引入了对话 - 意识到的自我注意力,以捕获有用的言论和言论中的依赖性。广泛的实验是在四个ERC基准上进行的,其主流模型用于比较。实验结果表明,所提出的模型在所有数据集上的表现都优于基准。还进行了其他几项实验,例如消融研究和错误分析,结果证实了对话框的关键模块的作用。

This paper presents our pioneering effort for emotion recognition in conversation (ERC) with pre-trained language models. Unlike regular documents, conversational utterances appear alternately from different parties and are usually organized as hierarchical structures in previous work. Such structures are not conducive to the application of pre-trained language models such as XLNet. To address this issue, we propose an all-in-one XLNet model, namely DialogXL, with enhanced memory to store longer historical context and dialog-aware self-attention to deal with the multi-party structures. Specifically, we first modify the recurrence mechanism of XLNet from segment-level to utterance-level in order to better model the conversational data. Second, we introduce dialog-aware self-attention in replacement of the vanilla self-attention in XLNet to capture useful intra- and inter-speaker dependencies. Extensive experiments are conducted on four ERC benchmarks with mainstream models presented for comparison. The experimental results show that the proposed model outperforms the baselines on all the datasets. Several other experiments such as ablation study and error analysis are also conducted and the results confirm the role of the critical modules of DialogXL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源