论文标题
一种迭代的机器学习方法,用于发现大部分超级晶格中意外的导热率提高
An iterative machine learning approach for discovering unexpected thermal conductivity enhancement in aperiodic superlattices
论文作者
论文摘要
尽管机器学习(ML)显示出在已知物理学下优化材料属性的效力越来越高,但由于其插值性质,其在挑战性的传统智慧中的应用仍然具有挑战性。在这项工作中,我们通过实施适应性的ML加速搜索过程来证明使用ML进行此类应用的潜力,该过程可以发现意外的晶格导热率($κ_l$)增强,而不是与周期性超级晶格相比,在Aperiodic超晶格(SLS)中的减少。我们使用非平衡分子动力学(NEMD)模拟来用于搜索空间中一小部分SL的高保真计算,以及卷积神经网络(CNN),可以快速预测大量结构的$κ__l$。为了确保CNN对目标未知结构进行准确的预测,我们迭代地识别包含结构特征的上的Aperiodic SLS,这些SLS可导致局部增强的热传输,并将它们作为每次迭代中CNN的其他训练数据包括在内。结果,我们的CNN可以准确地预测初始训练数据集中缺乏的高级$κ_l$的高$κ_l$,这使我们能够识别以前看不见的特殊结构。由于存在紧密间隔的界面,发现的RML结构表现出增加的相干声子对热导率的贡献。我们的工作描述了一种通用机器学习方法,用于识别非常大的子空间内的低概率出色解决方案并发现基础物理学。
While machine learning (ML) has shown increasing effectiveness in optimizing materials properties under known physics, its application in challenging conventional wisdom and discovering new physics still remains challenging due to its interpolative nature. In this work, we demonstrate the potential of using ML for such applications by implementing an adaptive ML-accelerated search process that can discover unexpected lattice thermal conductivity ($κ_l$) enhancement instead of reduction in aperiodic superlattices (SLs) as compared to periodic superlattices. We use non-equilibrium molecular dynamics (NEMD) simulations for high-fidelity calculations of $κ_l$ for a small fraction of SLs in the search space, along with a convolutional neural network (CNN) which can rapidly predict $κ_l$ for a large number of structures. To ensure accurate prediction by the CNN for the target unknown structures, we iteratively identify aperiodic SLs containing structural features which lead to locally enhanced thermal transport, and include them as additional training data for the CNN in each iteration. As a result, our CNN can accurately predict the high $κ_l$ of aperiodic SLs that are absent from the initial training dataset, which allows us to identify the previously unseen exceptional structures. The identified RML structures exhibit increased coherent phonon contribution to thermal conductivity owing to the presence of closely spaced interfaces. Our work describes a general purpose machine learning approach for identifying low-probability-of-occurrence exceptional solutions within an extremely large subspace and discovering the underlying physics.