论文标题

带有弱标签的大脑动脉瘤分类的解剖学3D CNN

An anatomically-informed 3D CNN for brain aneurysm classification with weak labels

论文作者

Di Noto, Tommaso, Marie, Guillaume, Tourbier, Sébastien, Alemán-Gómez, Yasser, Saliou, Guillaume, Cuadra, Meritxell Bach, Hagmann, Patric, Richiardi, Jonas

论文摘要

在医学成像中执行检测任务的一种通常采用的方法是依靠初始细分。但是,这种方法在很大程度上取决于体素的注释,这些注释是重复的且耗时的,可以为医学专家绘制。 Voxel面膜的一个有趣的替代品是所谓的“弱”标签:这些可以是粗糙的或超大的注释,这些注释较少,但可以更快地创建。在这项工作中,我们将大脑动脉瘤检测的任务作为贴剂二进制分类的任务,与较弱的标签相比,与相关的研究相比,那些相关的研究却是使用监督的分割方法和素的描述。我们的方法伴随着数据集创建的非平凡挑战:对于大多数局部疾病,异常斑块(带有动脉瘤)的数量不超过那些没有异常的斑点,而且两个类别通常具有不同的空间分布。为了解决这种频繁的固有不平衡,空间偏斜的数据集的情况,我们通过使用多尺度和多输入3D卷积神经网络(CNN)提出了一种新颖的,解剖学驱动的方法。我们将模型应用于214名受试者(83例患者,131例对照),他们接受了飞行时间磁共振血管造影(TOF-MRA),总共呈现了111个未破裂的脑动脉瘤。我们比较了负面贴片采样的两种策略,这些策略对网络的难度越来越高,我们展示了这种选择如何强烈影响结果。为了评估附加的空间信息是否有助于改善性能,我们将解剖信息的CNN与基线,空间敏捷的CNN进行了比较。当考虑包括船只状的负面补丁在内的更现实和具有挑战性的情况时,前者的模型获得了最高的分类结果(准确性$ \ simeq $ 95 \%,AUROC $ \ simeq $ 0.95,AUPR $ \ simeq $ 0.71),从而超过了基线。

A commonly adopted approach to carry out detection tasks in medical imaging is to rely on an initial segmentation. However, this approach strongly depends on voxel-wise annotations which are repetitive and time-consuming to draw for medical experts. An interesting alternative to voxel-wise masks are so-called "weak" labels: these can either be coarse or oversized annotations that are less precise, but noticeably faster to create. In this work, we address the task of brain aneurysm detection as a patch-wise binary classification with weak labels, in contrast to related studies that rather use supervised segmentation methods and voxel-wise delineations. Our approach comes with the non-trivial challenge of the data set creation: as for most focal diseases, anomalous patches (with aneurysm) are outnumbered by those showing no anomaly, and the two classes usually have different spatial distributions. To tackle this frequent scenario of inherently imbalanced, spatially skewed data sets, we propose a novel, anatomically-driven approach by using a multi-scale and multi-input 3D Convolutional Neural Network (CNN). We apply our model to 214 subjects (83 patients, 131 controls) who underwent Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) and presented a total of 111 unruptured cerebral aneurysms. We compare two strategies for negative patch sampling that have an increasing level of difficulty for the network and we show how this choice can strongly affect the results. To assess whether the added spatial information helps improving performances, we compare our anatomically-informed CNN with a baseline, spatially-agnostic CNN. When considering the more realistic and challenging scenario including vessel-like negative patches, the former model attains the highest classification results (accuracy$\simeq$95\%, AUROC$\simeq$0.95, AUPR$\simeq$0.71), thus outperforming the baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源