论文标题
模型性能的学习预测间隔
Learning Prediction Intervals for Model Performance
论文作者
论文摘要
了解未标记数据的模型性能是开发,部署和维护AI系统的基本挑战。通常使用测试集或定期手动质量评估评估模型性能,这两者都需要费力的手动数据标记。自动绩效预测技术旨在减轻这种负担,但潜在的不准确和对预测的信任缺乏信任,这阻止了他们的广泛采用。我们通过使用一种计算模型性能预测间隔的方法来解决绩效预测不确定性的核心问题。我们的方法使用转移学习来训练不确定性模型,以估计模型性能预测的不确定性。我们在各种漂移条件下评估了我们的方法,并显示出比竞争基线的实质性改善。我们认为,这个结果是预测间隔,并且总体上的性能预测更为实用。
Understanding model performance on unlabeled data is a fundamental challenge of developing, deploying, and maintaining AI systems. Model performance is typically evaluated using test sets or periodic manual quality assessments, both of which require laborious manual data labeling. Automated performance prediction techniques aim to mitigate this burden, but potential inaccuracy and a lack of trust in their predictions has prevented their widespread adoption. We address this core problem of performance prediction uncertainty with a method to compute prediction intervals for model performance. Our methodology uses transfer learning to train an uncertainty model to estimate the uncertainty of model performance predictions. We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines. We believe this result makes prediction intervals, and performance prediction in general, significantly more practical for real-world use.