论文标题

使用卫星图像和地理位置特征评估后紫外线伤害评估

Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation Features

论文作者

Cao, Quoc Dung, Choe, Youngjun

论文摘要

在飓风等危险事件(如急救人员和急救人员)至关重要的情况下,及时获得可靠的情况意识。实现该目标的一种有效方法是通过损害评估。最近,灾难研究人员一直在利用通过卫星或无人机捕获的图像来量化洪水淹没/受损的建筑物的数量。在本文中,我们提出了一种混合数据方法,该方法利用受影响区域的公开卫星图像和地理位置特征来识别飓风后损坏的建筑物。该方法表明,基于飓风哈维(Harvey)在2017年影响大休斯顿地区的案例研究,从执行类似的任务进行了显着改善。这一结果为统一计算机视觉算法的进步(例如卷积神经网络和损害评估中的传统方法)的广泛可能性打开了大门,例如,使用洪水深度或光学深度学。在这项工作中,对地理位置功能进行了创新的选择,以为图像功能提供额外的信息,但是根据他们的域知识和灾难的类型,可以决定包括哪些其他功能来建模事件的物理行为。在此工作中策划的数据集公开可用(doi:10.17603/ds2-3cca-f398)。

Gaining timely and reliable situation awareness after hazard events such as a hurricane is crucial to emergency managers and first responders. One effective way to achieve that goal is through damage assessment. Recently, disaster researchers have been utilizing imagery captured through satellites or drones to quantify the number of flooded/damaged buildings. In this paper, we propose a mixed data approach, which leverages publicly available satellite imagery and geolocation features of the affected area to identify damaged buildings after a hurricane. The method demonstrated significant improvement from performing a similar task using only imagery features, based on a case study of Hurricane Harvey affecting Greater Houston area in 2017. This result opens door to a wide range of possibilities to unify the advancement in computer vision algorithms such as convolutional neural networks and traditional methods in damage assessment, for example, using flood depth or bare-earth topology. In this work, a creative choice of the geolocation features was made to provide extra information to the imagery features, but it is up to the users to decide which other features can be included to model the physical behavior of the events, depending on their domain knowledge and the type of disaster. The dataset curated in this work is made openly available (DOI: 10.17603/ds2-3cca-f398).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源