论文标题
Biot合并模型的统一综合杂交杂物/混合混合离散化
Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot's consolidation model
论文作者
论文摘要
我们在三场配方中考虑了准静态BIOT的合并模型,其中三个未知的物理量是固体矩阵的位移$ \ boldsymbol {u} $,渗流速度$ \ boldsymbol {v}的流体和孔压力压力$ p $。由于液体质量的保护是门能机械的主要物理原理,因此我们使用$ \ boldsymbol {h}(\ propatorAtorName {div})$来保护此特性,并与$ \ boldsymbol {u} $和$ \ boldsymbol {v} $一起符合ANSATZ,以及适当的压力空间。这导致了Stokes和Darcy的稳定性和精确性,即离散模型的次要质量保护。 提出的离散技术结合了一种杂交的不连续的盖尔金方法,用于弹性子问题,并通过混合方法进行流程子问题,也通过杂交处理。后者允许静态冷凝步骤消除系统中的渗流速度,同时保留质量保护。最终要解决的系统仅包含与$ \ boldsymbol {u} $和$ p $相关的自由度,因此杂交过程产生的自由度,因此尤其是针对高阶近似值,这是一个非常昂贵的物理面向物理学空间离散家庭,用于毛弹性问题。 我们介绍了离散模型的构建,理论结果与其均匀的良好性以及最佳误差估计值和参数式预先调节器,作为开发均匀收敛的迭代求解器的关键工具。最后,在三维测试用例的一系列数值测试中说明了所提出方法的成本效益。
We consider the quasi-static Biot's consolidation model in a three-field formulation with the three unknown physical quantities of interest being the displacement $\boldsymbol{u}$ of the solid matrix, the seepage velocity $\boldsymbol{v}$ of the fluid and the pore pressure $p$. As conservation of fluid mass is a leading physical principle in poromechanics, we preserve this property using an $\boldsymbol{H}(\operatorname{div})$-conforming ansatz for $\boldsymbol{u}$ and $\boldsymbol{v}$ together with an appropriate pressure space. This results in Stokes and Darcy stability and exact, that is, pointwise mass conservation of the discrete model. The proposed discretization technique combines a hybridized discontinuous Galerkin method for the elasticity subproblem with a mixed method for the flow subproblem, also handled by hybridization. The latter allows for a static condensation step to eliminate the seepage velocity from the system while preserving mass conservation. The system to be solved finally only contains degrees of freedom related to $\boldsymbol{u}$ and $p$ resulting from the hybridization process and thus provides, especially for higher-order approximations, a very cost-efficient family of physics-oriented space discretizations for poroelasticity problems. We present the construction of the discrete model, theoretical results related to its uniform well-posedness along with optimal error estimates and parameter-robust preconditioners as a key tool for developing uniformly convergent iterative solvers. Finally, the cost-efficiency of the proposed approach is illustrated in a series of numerical tests for three-dimensional test cases.