论文标题
用于红外小目标检测的注意局部对比网络
Attentional Local Contrast Networks for Infrared Small Target Detection
论文作者
论文摘要
为了减轻纯数据驱动方法的最小内在特征问题,在本文中,我们提出了一个新型的模型驱动的深层网络,用于红外小目标检测,该网络结合了歧视性网络和传统模型驱动的方法,以利用标记数据和域知识。通过设计特征图周期性移动方案,我们将传统的局部对比度测量方法模块化为端到端网络中的深度无参数非线性特征细化层,该方法编码了相对较长的上下文上下文相互作用,并具有清晰的物理解释性。为了突出显示和保留小型目标特征,我们还利用了自下而上的注意调制,将低级特征的较小规模细节整合到更深层的高级特征中。我们进行了详细的消融研究,具有不同的网络深度,以验证网络体系结构中每个组件设计的有效性和效率。我们还将网络的性能与开放式SIRST数据集上的其他模型驱动方法和深网的性能进行了比较。结果表明,我们的网络会提高其竞争对手的性能。我们的代码,训练有素的模型和结果可在线提供。
To mitigate the issue of minimal intrinsic features for pure data-driven methods, in this paper, we propose a novel model-driven deep network for infrared small target detection, which combines discriminative networks and conventional model-driven methods to make use of both labeled data and the domain knowledge. By designing a feature map cyclic shift scheme, we modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network, which encodes relatively long-range contextual interactions with clear physical interpretability. To highlight and preserve the small target features, we also exploit a bottom-up attentional modulation integrating the smaller scale subtle details of low-level features into high-level features of deeper layers. We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of the design of each component in our network architecture. We also compare the performance of our network against other model-driven methods and deep networks on the open SIRST dataset as well. The results suggest that our network yields a performance boost over its competitors. Our code, trained models, and results are available online.