论文标题

通过使用深度学习方法的人工神经网络在计算机系统中的入侵检测

Intrusion detection in computer systems by using artificial neural networks with Deep Learning approaches

论文作者

Hidalgo-Espinoza, Sergio, Chamorro-Cupueran, Kevin, Chang-Tortolero, Oscar

论文摘要

入侵检测到计算机网络已成为网络安全中最重要的问题之一。攻击者继续进行研究和编码,以发现新的漏洞渗透到信息安全系统。因此,必须每天使用最新技术升级计算机系统,以使黑客陷入困境。本文着重于基于深度学习体系结构的入侵检测系统的设计和实施。作为第一步,浅网络接受了从数据集CICIDS2017获取的标记登录[计算机网络]数据的训练。通过使用绘图和探索代码来仔细跟踪和调整该网络的内部行为,直到达到入侵预测准确性的功能峰值为止。作为第二步,经过大量未标记数据训练的自动编码器被用作中间处理器,将压缩信息和抽象表示形式提供给原始浅网络。事实证明,最终的深度体系结构的性能要比仅任何版本的浅网络都更好。由MATLAB编写的结果函数代码脚本代表了一个可重新验证的系统,该系统已通过实际数据证明,产生了良好的精度和快速响应。

Intrusion detection into computer networks has become one of the most important issues in cybersecurity. Attackers keep on researching and coding to discover new vulnerabilities to penetrate information security system. In consequence computer systems must be daily upgraded using up-to-date techniques to keep hackers at bay. This paper focuses on the design and implementation of an intrusion detection system based on Deep Learning architectures. As a first step, a shallow network is trained with labelled log-in [into a computer network] data taken from the Dataset CICIDS2017. The internal behaviour of this network is carefully tracked and tuned by using plotting and exploring codes until it reaches a functional peak in intrusion prediction accuracy. As a second step, an autoencoder, trained with big unlabelled data, is used as a middle processor which feeds compressed information and abstract representation to the original shallow network. It is proven that the resultant deep architecture has a better performance than any version of the shallow network alone. The resultant functional code scripts, written in MATLAB, represent a re-trainable system which has been proved using real data, producing good precision and fast response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源