论文标题

使用几何深度学习的粒子跟踪重建

Particle Track Reconstruction using Geometric Deep Learning

论文作者

Verma, Yogesh, Jena, Satyajit

论文摘要

Muons是到达海平面的最丰富的电荷颗粒,源于次要带电的亲腐和kaons的衰减。当高能量宇宙射线与空气核相互作用时,会产生这些二次颗粒,从而启动二级颗粒的级联反应,从而形成了广泛的空气淋浴(EAS)。他们提供有关外物事件的基本信息,并以较大的通量和变化的角度分布为特征。为了解释宇宙射线的开放问题和起源,需要以能量和到达方向研究宇宙射线的各种组成部分。由于MUON和中微子产生之间的密切关系,因此它是跟踪的最重要粒子。我们根据几何深度学习方法提出了一种新颖的跟踪算法,该方法使用图形结构结合了域知识,以跟踪我们3-D闪烁体检测器中的宇宙射线MUON。使用GEANT4仿真软件包对检测器进行建模,并使用Corsika(Kascade的宇宙射线模拟)模拟EAS,重点是源自EAS的MUON。我们阐明了对噪声和双重命中,局限性的鲁棒性,限制以及所提出的算法在跟踪应用中的应用,并有可能将其推广到其他检测器进行天体物理和对撞机实验。

Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei initiating cascades of secondary particles which led to the formation of extensive air showers (EAS). They carry essential information about the extra-terrestrial events and are characterized by large flux and varying angular distribution. To account for open questions and the origin of cosmic rays, one needs to study various components of cosmic rays with energy and arriving direction. Because of the close relation between muon and neutrino production, it is the most important particle to keep track of. We propose a novel tracking algorithm based on the Geometric Deep Learning approach using graphical structure to incorporate domain knowledge to track cosmic ray muons in our 3-D scintillator detector. The detector is modeled using the GEANT4 simulation package and EAS is simulated using CORSIKA (COsmic Ray SImulations for KAscade) with a focus on muons originating from EAS. We shed some light on the performance, robustness towards noise and double hits, limitations, and application of the proposed algorithm in tracking applications with the possibility to generalize to other detectors for astrophysical and collider experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源