论文标题

Drinfeld模块化形式和应用的Atkin-Lehner理论

Atkin-Lehner theory for Drinfeld modular forms and applications

论文作者

Valentino, Maria

论文摘要

本文介绍了Atkin-Lehner理论的Drinfeld模块化形式。我们提供了$ \ mathfrak {p} $ - 新形式(使计算更容易)和Hecke操作员与Atkin-Lehner之间的交通量结果的等效定义。作为应用程序,我们显示了尖端形式的直接总和分解的标准,我们将$ \ mathfrak {p} $ - 由较低级别引起的新形式,我们提供$ \ mathfrak {p} $ - ADIC DRINFELD模块化的级别模块化级别的级别形式大于1。

The present paper deals with Atkin-Lehner theory for Drinfeld modular forms. We provide an equivalent definition of $\mathfrak{p}$-newforms (which makes computations easier) and commutativity results between Hecke operators and Atkin-Lehner involutions. As applications we show a criterion for a direct sum decomposition of cusp forms, we exibit $\mathfrak{p}$-newforms arising from lower levels and we provide $\mathfrak{p}$-adic Drinfeld modular forms of level greater than 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源